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4.7.1 Position Vector and Displacement

The position vector r of a particle P located in a
plane with reference to the origin of an x-y

reference frame (Fig. 4.12) is given by

r i j= +x y � �

where x and y are components of r along x-, and
y- axes or simply they are the coordinates of
the object.

(a)

(b)

Fig. 4.12 (a) Position vector r. (b) Displacement ∆r and

average velocity v of a particle.

Suppose a particle moves along the curve shown
by the thick line and is at P at time t and P′  at
time t′  [Fig. 4.12(b)].  Then, the displacement is :

∆r  = r′  – r (4.25)
and is directed from P to P′ .

We can write Eq. (4.25) in a component form:

∆r   ( ) ( )= + − +x' y' x � � � �i j i jy 

= +� �i j∆ ∆x y

where ∆x = x ′  – x, ∆y = y′  – y (4.26)

Velocity

The average velocity ( )v  of an object is the ratio

of the displacement and the corresponding time
interval :

v
r i j

i j= =
+

= +
∆ 

∆

∆ ∆

∆

∆

∆

∆

∆t

x y 

t

x

t

y

t

� �
� � (4.27)

Or, �ˆ
x yv v= +v  i j

Since v
r

=
∆

∆t
, the direction of the average velocity

is the same as that of ∆r (Fig. 4.12).  The velocity
(instantaneous velocity) is given by the limiting
value of the average velocity as the time interval
approaches zero :

v
r r

= =
→

lim
t tt∆

∆
∆0

d

d
(4.28)

The meaning of the limiting process can be easily
understood with the help of Fig 4.13(a) to (d). In
these figures, the thick line represents the path
of an object, which is at P at time t.   P

1
, P

2
 and

P
3 
represent the positions of the object  after

times ∆t
1
,∆t

2
, and ∆t

3
. ∆r

1
,  ∆r

2
, and ∆r

3
 are the

displacements of the object in times  ∆t
1
, ∆t

2
, and

Fig. 4.13 As the time interval ∆t approaches zero, the average velocity approaches the velocity v. The direction

of  v is parallel to the line tangent to the path.
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∆t
3
, respectively. The direction of the average

velocity v   is shown in figures (a), (b) and (c) for
three decreasing values of ∆t, i.e. ∆t

1
,∆t

2
, and ∆t

3
,

(∆t
1 

>  ∆t
2 

>  ∆t
3
). As ∆t →→→→→ 0, ∆r →→→→→ 0

and is along the tangent to the path [Fig. 4.13(d)].
Therefore, the direction of velocity at any point
on the path of an object is tangential to the
path at that point and is in the direction of
motion.

We can express v in a component form :

v
r

=
d

dt

 = +










→
lim

x

t

y

tt∆

∆

∆

∆

∆0

� �i j                   (4.29)

= +
→ →

� �i jlim
x

t
lim

y

tt t∆ ∆

∆

∆

∆

∆0 0

Or, v i j i j= + = +� � � �d

d

d

d

x

t

y

t
v vx y .

where v
x

t
v

y

tx y= =
d

d

d

d
,                 (4.30a)

So, if the expressions for the coordinates x and
y are known as functions of time, we can use
these equations to find v

x
 and v

y
.

The magnitude of v is then

v v vx
2

y
2= + (4.30b)

and the direction of v is given by the angle θ :

tan   tan
1θ θ= =













−v

v

v

v

y

x

y

x

,               (4.30c)

v
x
, v

y
 and angle θ are shown in Fig. 4.14 for a

velocity vector v at point p.

Acceleration

The average acceleration  a of an object for a
time interval ∆t moving in x-y plane is the change
in velocity divided by the time interval :

  
( )

a
v i j

i j= =
+

= +
∆

∆

∆

∆

∆

∆

∆

∆t

v v

t

v

t

v

t

x y x y
� �

� �         (4.31a)

Or, a i j= +a ax y
� � .        (4.31b)

The acceleration (instantaneous acceleration)
is the limiting value of the average acceleration
as the time interval approaches zero :

a
v

=
→

lim
tt∆

∆

∆0
       (4.32a)

Since ∆ ∆ ∆v = +v v ,x y
� �i j we have

a i j= +
→ →

� �lim
v

t
lim

v

tt

x

t

y

∆ ∆

∆

∆

∆

∆0 0

Or, a i j= +a ax y
� �

       (4.32b)

where, a
v

t
,  a

v

t
x

x
y

y
= =

d

d

d

d
     (4.32c)*

As in the case of velocity, we can understand
graphically the limiting process used in defining
acceleration on a graph showing the path of the
object’s motion. This is shown in Figs. 4.15(a) to
(d).  P represents the position of the object at
time t and P

1
, P

2
, P

3
 positions after time ∆t

1
, ∆t

2
,

∆t
3
, respectively (∆t

 1
> ∆t

2
>∆t

3
). The velocity vectors

at points P, P
1
, P

2
, P

3
 are also shown in Figs. 4.15

(a), (b) and (c). In each case of ∆t, ∆v is obtained
using the triangle law of vector addition. By
definition, the direction of average   acceleration
is the same as that of ∆v. We see that as ∆t

decreases, the direction of ∆v changes and
consequently, the direction of the acceleration
changes. Finally, in the limit ∆t g0 [Fig. 4.15(d)],
the average acceleration becomes the
instantaneous acceleration and has the direction
as shown.

Fig. 4.14 The components v
x
 and vy

 
of velocity v and

the angle θ it makes with x-axis. Note that

v
x
 = v cos θ, v

y
 = v sin θ.

* In terms of x and y, a
x
 and a

y
 can be expressed as
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t

  x (m)

Note that in one dimension, the velocity and
the acceleration of an object are always along
the same straight line (either in the same
direction or in the opposite direction).
However, for motion in two or three
dimensions, velocity and acceleration vectors
may have any angle between 0° and 180°
between them.

Example 4.4 The position of a particle is
given by

             r  i j k = + +3.0t ˆ . ˆ . ˆ2 0 5 02t

where t is in seconds and the coefficients
have the proper units for r to be in metres.
(a) Find v(t) and a(t) of the particle. (b) Find
the magnitude and direction of v(t) at
t = 1.0 s.

Answer

( ) ( )v
r

i  j kt
t t

t t
2= = + +

d

d

d

d
3.0 2.0 5.0 � � �

      = +3.0 .0� �i j4 t 

( )a 
v

jt
t

=
d

d
= +4.0�

     a = 4.0 m s–2 along y- direction

At  t = 1.0 s,  ˆ ˆ3.0 4.0v = i + j

It’s magnitude is 
2 2 1-= 3 4 5.0 m sv + =

and direction is

-1 1 4
= tan tan 53

3

y

x

v

v
θ −    °= ≅   

  
with x-axis.

t

4.8 MOTION IN A PLANE WITH CONSTANT
ACCELERATION

Suppose that an object is moving in x-y plane
and its acceleration a is constant.  Over an
interval of time, the average acceleration will
equal this constant value. Now, let the velocity
of the object be v0 at time t = 0 and v at time t.

Then, by definition

a
v v v v0 0=

−
−

=
−

t t0

Or, v v a0= + t (4.33a)

In terms of components :

v v a tx ox x= +

v v a ty oy y= + (4.33b)

Let us now find how the position r changes with
time. We follow the method used in the one-
dimensional case. Let r

o
 and r be the position

vectors of the particle at time 0 and t and let the
velocities at these instants be v

o
 and v. Then,

over this time interval t, the average velocity is
(v

o
 + v)/2. The displacement is the average

velocity multiplied by the time interval :

r r
v v v a v

0
0 0 0− =

+





=
+( ) +




2 2
t

t
t

Fig. 4.15 The average acceleration for three time intervals (a) ∆t1, (b) ∆t2, and (c) ∆t3, (∆t1> ∆t2> ∆t3). (d) In the

limit ∆t g0, the average acceleration becomes the acceleration.
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t

t

        
21

2
t t= +0v a

Or, r r v a0 0= + +t t
1

2
2 (4.34a)

It can be easily verified that the derivative of

Eq. (4.34a), i.e. 
d

d

r

t
 gives Eq.(4.33a) and it also

satisfies the condition that at t=0, r = r
o
.

Equation (4.34a) can be written in component
form as

x x v t a tox x= + +0
21

2

21

2
0 oy yy y v t a t= + + (4.34b)

One immediate interpretation of Eq.(4.34b) is that
the  motions in x- and y-directions can be treated
independently of each other.  That is, motion in
a plane (two-dimensions) can be treated as two
separate simultaneous one-dimensional
motions with constant acceleration along two
perpendicular directions.  This is an important
result and is useful in analysing motion of objects
in two dimensions. A similar result holds for three
dimensions. The choice of perpendicular
directions is convenient in many physical
situations, as we shall see in section 4.10 for
projectile motion.

Example 4.5 A particle starts from origin
at t = 0 with a velocity 5.0 î m/s and moves
in x-y plane under action of a force which
produces a constant acceleration of

(3.0i$$$$$+2.0j$$$$$ ) m/s2. (a) What is the

y-coordinate of the particle at the instant
its x-coordinate is 84 m ? (b) What is the
speed of the particle at this time ?

Answer  From Eq. (4.34a) for r0
 
= 0, the position

of the particle is given by

( ) 21

2
t t t= +0r v a

( ) ( ) 2ˆ ˆ ˆ5.0 1/2 3.0 2.0t t= + +i i j

( )2 2ˆ ˆ5.0 1.5 1.0t t t= + +i j

Therefore, ( ) 25.0 1.5x t t t= +

( ) 21.0y t t= +

Given x (t) = 84 m, t = ?

5.0 t + 1.5 t 2 = 84 ⇒⇒⇒⇒⇒ t = 6 s
At t = 6 s,  y = 1.0 (6)2 = 36.0 m

 Now, the velocity ( )d ˆ ˆ5.0 3.0 2.0
d

t t
t

= = + +
r

v i j

At   t = 6 s,  v i j= +23. � �0 12.0

speed  
2 2 123 12 26 m s−= = + ≅v . t

4.9 RELATIVE VELOCITY IN TWO
DIMENSIONS

The concept of relative velocity, introduced in
section 3.7 for motion along a straight line, can
be easily extended to include motion in a plane
or in three dimensions. Suppose that two objects
A and B are moving with velocities v

A
 and v

B

(each with respect to some common frame of
reference, say ground.). Then, velocity of object
A relative to that of B is :

v
AB 

= v
A 
– v

B
(4.35a)

and similarly, the velocity of object B relative to

that of A is :
v

BA  
=  v

B 
–

  
v

A

Therefore, v
AB   

= – v
BA

        (4.35b)

and, v vAB BA= (4.35c)

Example 4.6   Rain is falling vertically with
a speed of 35 m s–1. A woman rides a bicycle
with a speed of 12 m s–1  in east to west
direction. What is the direction in which
she should hold her umbrella ?

Answer  In  Fig. 4.16 v
r  
represents the velocity

of rain and v
b 
, the velocity of  the bicycle, the

woman is riding. Both these velocities are with
respect to the ground. Since the woman is riding
a bicycle, the velocity of rain as  experienced by

Fig. 4.16

her is the velocity of rain relative to the velocity
of the bicycle she is riding. That is  v

rb 
= v

r 
–

  
v

b
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This relative velocity vector as shown in
Fig. 4.16 makes an angle θ  with the vertical. It is
given by

tan 
12

35
0.343  θ = = =

v

v

b

r

Or,      θ ≅ 19
�

Therefore, the woman should hold her

umbrella at an angle of about 19° with the

vertical towards the west.

Note carefully the difference between this

Example and the Example 4.1. In Example 4.1,

the boy experiences the resultant (vector

sum) of two velocities while in this example,

the woman experiences the velocity of rain

relative to the bicycle (the vector difference

of the two velocities). t

4.10  PROJECTILE MOTION

As an application of the ideas developed in the

previous sections, we consider the motion of a

projectile. An object that is in flight after being

thrown or projected is called a projectile.  Such

a projectile might be a football, a cricket ball, a

baseball or any other object. The motion of a

projectile may be thought of as the result of two

separate, simultaneously occurring components

of motions. One component is along a horizontal

direction without  any acceleration and the other

along the vertical direction with constant

acceleration due to the force of gravity. It was

Galileo who first stated this independency of the

horizontal and the vertical components of

projectile motion in his Dialogue on the great

world systems (1632).

In our discussion, we shall assume that the

air resistance has negligible effect on the motion

of the projectile. Suppose that the projectile is

launched with velocity v
o
 that makes an angle

θ
o
 with  the x-axis as shown in Fig. 4.17.

After the object has been projected, the

acceleration acting on it is that due to gravity

which is directed vertically downward:

a j= −g �

Or, a
x
 = 0, a

y
 = – g (4.36)

The components of initial velocity v
o
 are :

v
ox 

= v
o
 cos θo

v
oy

= v
o
 sin θo       (4.37)

If we take the initial position to be the origin of
the reference frame as shown in Fig. 4.17, we
have :

x
o 
= 0, y

o
 = 0

Then, Eq.(4.34b) becomes :

x = v
ox 

t = (v
o
 cos θ

o 
) t

and y = (v
o
 sin θ

o
 ) t – ( ½ )g t2       (4.38)

The components of velocity at time t can be
obtained using Eq.(4.33b) :

v
x
 = v

ox
 = v

o
 cos θ

o

v
y = v

o
 sin θ

o
 – g t (4.39)

Equation (4.38) gives the x-, and y-coordinates

of the position of a projectile at time t in terms of

two parameters — initial speed v
o
 and projection

angle θ
o
. Notice that the choice of mutually

perpendicular x-, and y-directions for the

analysis of the projectile motion has resulted in

a simplification. One of the components of

velocity, i.e. x-component remains constant

throughout the motion and only the

y- component changes, like an object in free fall

in vertical direction.  This is shown graphically

at few instants in Fig. 4.18. Note that at the point

of maximum height, v
y
= 0 and therefore,

θ = =−tan 01
v

v

y

x

Equation of path of a projectile

What is the shape of the path followed by the
projectile?  This can be seen by eliminating the
time between the expressions for x and y as
given in Eq. (4.38).  We obtain:

Fig 4.17   Motion of an object projected with velocity

v
o
 at angle θ

0
.
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t

t

( )
( )

2
o 2

o o

tan 
2 cos

g
y x x

v
θ

θ
= − (4.40)

Now, since g, θ
o 
and v

o
 are constants, Eq. (4.40)

is of the form y = a x + b x2, in which a and b are
constants.  This is the equation of a parabola,
i.e. the path of the projectile is a parabola
(Fig. 4.18).

Fig. 4.18  The path of a projectile is a parabola.

Time of maximum height

How much time does the projectile take to reach

the maximum height ?  Let this time be denoted

by t
m
.  Since at this point, v

y
= 0, we have from

Eq. (4.39):

v
y
 = v

o
 sinθ

o
 – g t

m
 = 0

Or, t
m
 = v

o
 sinθ

o 
/g                (4.41a)

The total time T
f  
during which the projectile is

in flight can be obtained by putting y = 0 in

Eq. (4.38). We get :

T
f
 = 2 (v

o
 sin θ

o
 )/g                  (4.41b)

T
f
  is known as the time of flight of the projectile.

We note that T
f
  = 2 t

m 
, which is expected

because of the symmetry of the parabolic path.

Maximum height of a projectile

The maximum height h
m
 reached by the

projectile can be calculated by substituting

t = t
m
 in Eq. (4.38) :

( )y h v
v

g

g v

g
m 0

0 0= =












 −













sin

sin

2

sin
0

0 0

2

θ
θ θ

Or,
( )

h
v

m

0
=

sin 0θ
2

2g
     (4.42)

Horizontal range of a projectile

The horizontal distance travelled by a projectile
from its initial position (x = y = 0) to the position
where it passes y = 0 during its fall is called the
horizontal range, R. It is the distance travelled
during the time of flight T

f
  . Therefore, the range

R is
R  = (v

o
 cos θ

o
) (T

f 
)

    =(v
o
 cos θ

o
)  (2 v

o
 sin θ

o
)/g

Or, R
v

g

0

2

=
 sin 2 0θ

(4.43a)

Equation (4.43a) shows that for a given
projection velocity v

o 
, R is maximum when sin

2θ
0
 is maximum, i.e., when θ

0
 = 450.

The maximum horizontal range is, therefore,

R
v

g
m

0

2

=     (4.43b)

Example 4.7 Galileo, in his book Two new
sciences, stated that “for elevations which
exceed or fall short of 45° by equal
amounts, the ranges are equal”. Prove this
statement.

Answer  For a projectile launched with velocity
v

o
 at an angle θ

o
 , the range is given by

0sin22
0v

R
g

θ
=

Now, for angles, (45° + α ) and ( 45° – α),  2θ
o 
is

(90° + 2α ) and  ( 90° – 2α ) , respectively. The
values of  sin (90° + 2α ) and  sin (90° – 2α ) are
the same, equal to that of cos 2α. Therefore,
ranges are equal for elevations which exceed or
fall short of 45° by equal amounts α.   t

Example 4.8  A hiker stands on the edge
of a cliff 490 m above the ground and
throws a stone horizontally with an initial
speed of 15 m s-1. Neglecting air resistance,
find the time taken by the stone to reach
the ground, and the speed with which it
hits the ground. (Take g = 9.8 m s-2 ).
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t

Answer   We choose the origin of the x-,and y-

axis at the edge of the cliff and t = 0 s at the

instant the stone is thrown. Choose the positive

direction of x-axis to be along the initial velocity

and the positive direction of y-axis to be the

vertically upward direction. The x-, and y-

components of the motion can be treated

independently. The equations of motion are :

x (t)  = x
o
 + v

ox
 t

y (t)  = y
o
 + v

oy
 
 
t +(1/2) a

y
 t2

Here, x
o
 = y

o
 = 0, v

oy
 = 0, a

y 
=

 
 
–g  = –9.8 m s-2,

v
ox

 = 15 m s-1.

The stone hits the  ground when y(t) = – 490 m.

– 490 m = –(1/2)(9.8) t2.

This gives     t =10 s.

The velocity components are v
x
 = v

ox 
 and

v
y
 = v

oy
 – g t

so that when the stone hits the ground :

v
ox
 = 15 m s–1

v
oy

 = 0 – 9.8 × 10 = – 98 m s–1

Therefore, the  speed of the stone is

2 215 98 99 m s2 2 1
x yv v  −+ = + =   t

Example 4.9 A cricket ball is thrown at a
speed of 28 m s–1 in a direction 30° above
the horizontal. Calculate (a) the maximum
height, (b) the time taken by the ball to
return to the same level, and (c) the
distance from the thrower to the point
where the ball returns to the same level.

Answer  (a) The maximum height is given by

( ) ( )
( )

2 2

o sin 28sin 30
 m

2 2 9.8

0

m

v
h

g

θ °
= =

     
=

×
×

=
14 14

2 9.8
10.0 m

(b) The time taken to return to the same level is
T

f 
= (2 v

o
 sin θ

o 
)/g = (2× 28 × sin 30° )/9.8

    = 28/9.8 s = 2.9 s
(c) The distance from the thrower to the point
where the ball returns to the same level is

R
( )2

o osin2 28 28 sin60
69 m

9.8

ov

g

θ × ×
= = =

t

4.11  UNIFORM CIRCULAR MOTION

When an object follows a circular path at a
constant speed, the motion of the object is called
uniform circular motion.  The word “uniform”
refers to the speed, which is uniform (constant)
throughout the motion.  Suppose an object is
moving with uniform speed v in a circle of radius
R as shown in Fig. 4.19. Since the velocity of the
object is changing continuously in direction, the
object undergoes acceleration. Let us find the
magnitude and the direction of this acceleration.

Neglecting air resistance - what does
the assumption really mean?

While treating the topic of projectile motion,
we have stated that we assume that the
air resistance has no effect on the motion
of the projectile. You must understand what
the statement really means. Friction, force
due to viscosity, air resistance are all
dissipative forces. In the presence of any of
such forces opposing motion, any object will
lose some part of its initial energy and
consequently, momentum too. Thus, a
projectile that traverses a parabolic path
would certainly show deviation from its
idealised trajectory in the presence of air
resistance. It will not hit the ground with
the same speed with which it was projected
from it. In the absence of air resistance, the
x-component of the velocity remains
constant and it is only the y-component that
undergoes a continuous change. However,
in the presence of air resistance, both of
these would get affected. That would mean
that the range would be less than the one
given by Eq. (4.43). Maximum height
attained would also be less than that
predicted by Eq. (4.42). Can you then,
anticipate the change in the time of flight?

In order to avoid air resistance, we will
have to perform the experiment in vacuum
or under low pressure, which is not easy.
When we use a phrase like ‘neglect air
resistance’, we imply that the change in
parameters such as range, height etc. is
much smaller than their values without air
resistance. The calculation without air
resistance is much simpler than that with
air resistance.
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Let r and r′ be the position vectors and v and
v′ the velocities of the object when it is at point P
and P ′ as shown in Fig. 4.19(a).  By definition,
velocity at a point is along the tangent at that
point in the direction of motion. The velocity
vectors v and v′ are as shown in Fig. 4.19(a1).
∆v is obtained in Fig. 4.19 (a2) using the triangle
law of vector addition. Since the path is circular,
v is perpendicular to r and so is v′ to r′.
Therefore, ∆v is perpendicular to ∆r. Since

average acceleration is along ∆v a
v

=










∆

∆t
, the

average acceleration a  is perpendicular to ∆r. If
we place ∆v on the line that bisects the angle
between r and r′, we see that it is directed towards
the centre of the circle. Figure 4.19(b) shows the
same quantities for smaller time interval. ∆v and

hence a  is again directed towards the centre.

In Fig. 4.19(c), ∆t� 0 and the average

acceleration becomes the instantaneous
acceleration. It is directed towards the centre*.
Thus, we find that the acceleration of an object
in uniform circular motion is always directed
towards the centre of the circle. Let us now find
the magnitude of the acceleration.

The magnitude of a is, by definition, given by

a
v

=
→∆

∆
∆t 0 t

Let the angle between position vectors r and

r′ be ∆θ.   Since the velocity vectors v and v′ are

always perpendicular to the position vectors, the

angle between them is also ∆θ . Therefore, the

triangle CPP ′ formed by the position vectors and

the triangle GHI formed by the velocity vectors
v, v′ and ∆v are similar (Fig. 4.19a).  Therefore,
the ratio of the base-length to side-length for
one of the triangles is equal to that of the other
triangle. That is :

∆ ∆v r

v R
=

Or, ∆
∆

v
r

= v
R

Therefore,

  a
v r r

=
→

=
→

=
→∆

∆

∆ ∆

∆

∆ ∆

∆

∆t 0 0 R R 0t t

v

t

v

t t

If ∆t is small, ∆θ will also be small and then arc
PP′ can be approximately taken to be|∆r|:

∆ ∆r ≅ v t

           
∆
∆
r

t
v≅

Or,
∆

∆

∆t 0 t
v

→
=

r

Therefore, the centripetal acceleration a
c
 is :

Fig. 4.19 Velocity and acceleration of an object in uniform circular motion.  The time interval ∆t decreases from

(a) to (c) where it is zero.  The acceleration is directed, at each point of the path, towards the centre of

the circle.

 * In the limit ∆t�0, ∆r becomes perpendicular to r. In this limit ∆v→ 0 and is consequently also perpendicular

    to  V. Therefore, the acceleration is directed towards the centre, at each point of the circular path.
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t

a
c
  =   

v

R

 
 
 

v = v2/R (4.44)

Thus, the acceleration of an object moving with

speed v in a circle of radius R has a magnitude

v
2
/R and is always directed towards the centre.

This is why this acceleration is called centripetal
acceleration (a term proposed by Newton). A
thorough analysis of centripetal acceleration was
first published in 1673 by the Dutch scientist
Christiaan Huygens (1629-1695) but it was
probably known to Newton also some years earlier.
“Centripetal” comes from a Greek term which means
‘centre-seeking’.  Since v and R are constant, the
magnitude of the centripetal acceleration is also
constant. However, the direction changes —
pointing always towards the centre.  Therefore, a
centripetal acceleration is not a constant vector.

We have another way of describing the
velocity and the acceleration of an object  in
uniform circular motion.  As the object moves
from P to P′ in time ∆t (= t′ – t), the line CP
(Fig. 4.19) turns through an angle ∆θ  as shown
in the figure. ∆θ  is called angular distance.  We
define the angular speed ω (Greek letter omega)
as the time rate of change of angular
displacement :

ω
θ

=
∆

∆t
     (4.45)

Now, if the distance travelled by the object
during the time ∆t is ∆s, i.e. PP′ is ∆s, then :

v
s

t
=

∆
∆

but ∆s = R ∆θ. Therefore :

v R
t

= =
∆

∆

θ
ωR 

v =  R ω (4.46)

We can express centripetal acceleration a
c
 in

terms of angular speed :

a
v

R

R

R
Rc = = =

2 2
2ω

ω
2

a Rc = ω 2 (4.47)

The time taken by an object to make one revolution
is known as its time period T and the number of
revolution made in one second is called its
frequency ν (=1/T ).  However, during this time the
distance moved by the object is s = 2πR.

Therefore, v = 2πR/T =2πRν (4.48)
In terms of frequency ν, we have

ω = 2πν
           v = 2πRν

a
c
 = 4π2 ν2R                                       (4.49)

Example 4.10 An insect trapped in a
circular groove of radius 12 cm moves along
the groove steadily and completes 7
revolutions in 100 s. (a) What is the
angular speed, and the linear speed of the
motion? (b) Is the acceleration vector a
constant vector ? What is its magnitude ?

Answer  This is an example of uniform circular
motion. Here R = 12 cm. The angular speed ω is
given by

ω = 2π/T = 2π × 7/100 = 0.44 rad/s

The linear speed v is :

v =ω R = 0.44 s-1 × 12 cm =  5.3 cm s-1

The direction of velocity v is along the tangent
to the circle at every point. The acceleration is
directed towards the centre of the circle. Since
this direction changes continuously,
acceleration here is not a constant vector.
However, the magnitude of acceleration is
constant:

a = ω2 R = (0.44 s–1)2 (12 cm)

         = 2.3 cm s-2 t
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